Introduction to Astrophysics

Watch Introduction to Astrophysics

  • 2018
  • 1 Season

Introduction to Astrophysics from The Great Courses Signature Collection is a fascinating exploration of our universe, hosted by Joshua N. Winn, Associate Professor of Physics at Princeton University. Over the course of 24 lectures, Winn takes viewers on a journey through space and time, highlighting the principles of astrophysics and their applications in understanding the universe.

Throughout the show, Winn explains the fundamental concepts of astrophysics in an accessible, conversational tone. He covers everything from the birth and evolution of the universe, to the properties of stars and galaxies, to the search for extraterrestrial life. He also delves into the cutting-edge research and techniques used in astrophysics, such as gravitational wave detection and the study of exoplanets.

One of the great strengths of Introduction to Astrophysics is Winn's ability to make complex concepts understandable to a broad audience. He employs clear, intuitive explanations of scientific principles, backed up by stunning visual aids, animations, and photographs. His enthusiasm for the subject is infectious, and his passion for teaching is evident throughout the show.

Another benefit of the show is that it provides viewers with a window into the scientific process. Winn discusses the ways in which astronomers and astrophysicists obtain data, make predictions, and test theories. He also emphasizes the importance of collaboration among scientists from different fields, as well as the role of serendipity and unexpected discoveries in scientific breakthroughs.

One of the most intriguing topics covered in the show is the possibility of finding life beyond Earth. Winn examines the conditions necessary for life to exist, both in our own solar system and in other star systems. He also discusses the challenges of detecting extraterrestrial life, as well as the possibility that we may already have encountered it without realizing it.

Overall, Introduction to Astrophysics is an excellent choice for anyone interested in learning more about our universe and the science behind it. Joshua N. Winn's engaging teaching style makes complex concepts accessible, while the show's fascinating subject matter is sure to spark viewers' curiosity and imagination. Whether you're a science buff or a layperson, this show is an entertaining and enlightening journey through the cosmos.

Introduction to Astrophysics is a series that ran for 1 seasons (24 episodes) between November 30, 2018 and on The Great Courses Signature Collection

Introduction to Astrophysics
Filter by Source

Seasons
The History of the Universe
24. The History of the Universe
November 30, 2018
In this last episode, follow the trail of the greatest unsolved problem in astrophysics. Along the way, get a grip on the past, present, and future of the universe. Discovered in the 1990s, the problem is "dark energy," which is causing the expansion of the universe to accelerate. Trace this mysterious force to the lambda term in the celebrated Friedmann equation, proposed in the 1920s.
The First Atoms and the First Nuclei
23. The First Atoms and the First Nuclei
November 30, 2018
The Big Bang theory is one pillar of modern cosmology. Another is the cosmic microwave background radiation, which is the faint "echo" of the Big Bang, permeating all of space and discovered in 1965. The third pillar is the cosmic abundances of the lightest elements, which tell the story of the earliest moment of nucleosynthesis taking place in the first few minutes of the Big Bang.
Dark Matter
22. Dark Matter
November 30, 2018
Begin with active galaxies that have supermassive black holes gobbling up nearby stars. Then consider clusters of galaxies and the clues they give for missing mass - dubbed "dark matter." Chart the distribution of dark matter around galaxies and speculate what it might be. Close with the Big Bang, deduced from evidence that most galaxies are speeding away from us; the farther away, the faster.
The Milky Way and Other Galaxies
21. The Milky Way and Other Galaxies
November 30, 2018
Take in our entire galaxy, called the Milky Way. Locate Earth's position; then survey other galaxies, classifying their structure. Use the virial theorem to analyze a typical galaxy, which can be thought of as a "collisionless gas" of stars. Note that galaxies themselves often collide with each other, as the nearby Andromeda Galaxy is destined to do with the Milky Way billions of years from now.
Gravitational Waves
20. Gravitational Waves
November 30, 2018
Investigate the physics of gravitational waves, a phenomenon predicted by Einstein and long thought to be undetectable. It took colliding black holes to generate gravitational waves that could be picked up by an experiment called LIGO on Earth, a billion light years away. This remarkable achievement won LIGO scientists the 2017 Nobel Prize in Physics.
Supernovas and Neutron Stars
19. Supernovas and Neutron Stars
November 30, 2018
Look inside a star that weighs several solar masses to chart its demise after fusing all possible nuclear fuel. Such stars end in a gigantic explosion called a supernova, blowing off outer material and producing a super-compact neutron star, a billion times denser than a white dwarf. Study the rapid spin of neutron stars and the energy they send beaming across the cosmos.
When Stars Grow Old
18. When Stars Grow Old
November 30, 2018
Trace stellar evolution from two points of view. First, dive into a protostar and witness events unfold as the star begins to contract and fuse hydrogen. Exhausting that, it fuses heavier elements and eventually collapses into a white dwarf - or something even denser. Next, view this story from the outside, seeing how stellar evolution looks to observers studying stars with telescopes.
White Dwarfs
17. White Dwarfs
November 30, 2018
Discover the fate of solar mass stars after they exhaust their nuclear fuel. The galaxies are teeming with these dim "white dwarfs" that pack the mass of the Sun into a sphere roughly the size of Earth. Venture into quantum theory to understand what keeps these exotic stars from collapsing into black holes, and learn about the Chandrasekhar limit, which determines a white dwarf's maximum mass.
Simple Stellar Models
16. Simple Stellar Models
November 30, 2018
Learn how stars work by delving into stellar structure, using the Sun as a model. Relying on several physical principles and sticking to order-of-magnitude calculations, determine the pressure and temperature at the center of the Sun, and the time it takes for energy generated in the interior to reach the surface, which amounts to thousands of years. Apply your conclusions to other stars.
Why Stars Shine
15. Why Stars Shine
November 30, 2018
Get a crash course in nuclear physics as you explore what makes stars shine. Zero in on the Sun, working out the mass it has consumed through nuclear fusion during its 4.5-billion-year history. While it's natural to picture the Sun as a giant furnace of nuclear bombs going off non-stop, calculations show it's more like a collection of toasters; the Sun is luminous simply because it's so big.
Planets around Other Stars
14. Planets around Other Stars
November 30, 2018
Embark on Professor Winn's specialty: extrasolar planets, also known as exoplanets. Calculate the extreme difficulty of observing an Earth-like planet orbiting a Sun-like star in our stellar neighborhood. Then look at the clever techniques that can now overcome this obstacle. Review the surprising characteristics of many exoplanets and focus on five that are especially noteworthy.
The Properties of Stars
13. The Properties of Stars
November 30, 2018
Take stock of the wide range of stellar luminosities, temperatures, masses, and radii using spectra and other data. In the process, construct the celebrated Hertzsprung-Russell diagram, with its main sequence of stars in the prime of life, including the Sun. Note that two out of three stars have companions. Investigate the orbital dynamics of these binary systems.
The Message in a Spectrum
12. The Message in a Spectrum
November 30, 2018
Starting with the spectrum of sunlight, notice that thin, dark lines are present at certain wavelengths. These lines reveal the composition and temperature of the Sun's outer atmosphere, and similar lines characterize other stars. More diffuse phenomena such as nebulae produce bright emission lines against a dark spectrum. Probe the quantum and thermodynamic events implied by these clues.
Radio and X-Ray Telescopes
11. Radio and X-Ray Telescopes
November 30, 2018
Non-visible wavelengths compose by far the largest part of the electromagnetic spectrum. Even so, many astronomers assumed there was nothing to see in these bands. The invention of radio and X-ray telescopes proved them spectacularly wrong. Examine the challenges of detecting and focusing radio and X-ray light, and the dazzling astronomical phenomena that radiate in these wavelengths.
Optical Telescopes
10. Optical Telescopes
November 30, 2018
Consider the problem of gleaning information from the severely limited number of optical photons originating from astronomical sources. Our eyes can only do it so well, and telescopes have several major advantages: increased light-gathering power, greater sensitivity of telescopic cameras and sensors such as charge-coupled devices (CCDs), and enhanced angular and spectral resolution.
Comparative Planetology
9. Comparative Planetology
November 30, 2018
Survey representative planets in our solar system with an astrophysicist's eyes, asking what makes Mercury, Venus, Earth, and Jupiter so different. Why doesn't Mercury have an atmosphere? Why is Venus so much hotter than Earth? Why is Jupiter so huge? Analyze these and other riddles with the help of physical principles such as the Stefan-Boltzmann law.
Photons and Particles
8. Photons and Particles
November 30, 2018
Investigate our prime source of information about the universe: electromagnetic waves, which consist of photons from gamma ray to radio wavelengths. Discover that a dense collection of photons is comparable to a gas obeying the ideal gas law. This law, together with the Stefan-Boltzmann law, Wien's law, and Kepler's third law, help you make sense of the cosmos as the course proceeds.
Black Holes
7. Black Holes
November 30, 2018
Use your analytical skill and knowledge of gravity to probe the strange properties of black holes. Learn to calculate the Schwarzschild radius (also known as the event horizon), which is the boundary beyond which no light can escape. Determine the size of the giant black hole at the center of our galaxy and learn about an effort to image its event horizon with a network of radio telescopes.
Tidal Forces
6. Tidal Forces
November 30, 2018
Why are the rings around Saturn and the much fainter rings around Jupiter, Uranus, and Neptune at roughly the same relative distances from the planet? Why are large moons spherical? And why are large moons only found in wide orbits? These problems lead to an analysis of tidal forces and the Roche limit. Close by calculating the density of the Sun based on Earth's ocean tides.
Newton's Hardest Problem
5. Newton's Hardest Problem
November 30, 2018
Continue your exploration of motion by discovering the law of gravity just as Newton might have - by analyzing Kepler's laws with the aid of calculus (which Newton invented for the purpose). Look at a graphical method for understanding orbits, and consider the conservation laws of angular momentum and energy in light of Emmy Noether's theory that links conservation laws and symmetry.
The Physics Demonstration in the Sky
4. The Physics Demonstration in the Sky
November 30, 2018
In the first of two episodes on motion in the heavens, investigate the connection between Isaac Newton's laws of motion and the earlier laws of planetary motion discovered empirically by Johannes Kepler. Find that Kepler's third law is the ideal method for measuring the mass of practically any phenomenon in astrophysics. Also, study the mathematics behind Kepler's second law.
Making Maps of the Cosmos
3. Making Maps of the Cosmos
November 30, 2018
Discover how astrophysicists map the universe. Focus on the tricky problem of calculating distances, seeing how a collection of overlapping techniques provide a "cosmic distance ladder" that works from nearby planets (by means of radar) to stars and galaxies (using parallax and Cepheid variable stars) to far distant galaxies (by observing a type of supernova with a standard intrinsic brightness).
Zooming In to Fundamental Particles
2. Zooming In to Fundamental Particles
November 30, 2018
After touring the universe on a macro scale in the previous episode, now zoom in on the microcosmos - advancing by powers of ten into the realm of molecules, atoms, and nuclei. Learn why elementary particles are just as central to astrophysics as stars and galaxies. Then review the four fundamental forces of nature and perform a calculation that explains why atoms have to be the size they are.
Zooming Out to Distant Galaxies
1. Zooming Out to Distant Galaxies
November 30, 2018
Define the difference between astrophysics and astronomy. Then study the vast range of scales in astrophysics - from nanometers to gigaparsecs, from individual photons to the radiation of suns. Get the big picture in a breathtaking series of exponential jumps - zooming from Earth, past the planets, stars, galaxies, and finally taking in countless clusters of galaxies. #Science & Mathematics
Description
Where to Watch Introduction to Astrophysics
Introduction to Astrophysics is available for streaming on the The Great Courses Signature Collection website, both individual episodes and full seasons. You can also watch Introduction to Astrophysics on demand at Amazon Prime and Amazon.
  • Premiere Date
    November 30, 2018